Bibliography
D. G. Ainley and G. C. R. Mathieson. A method of performance estimation for axial-flow turbines. Aeronautical Research Council Reports and Memoranda 2974, Ministry of Supply, London, United Kingdom, 1951. URL: https://reports.aerade.cranfield.ac.uk/handle/1826.2/3538.
D. G. Ainley and G. C. R. Mathieson. An examination of the flow and pressure losses in blade rows of axial-flow turbines. Aeronautical Research Council Reports and Memoranda 2891, Ministry of Supply, London, United Kingdom, 1951. URL: https://reports.aerade.cranfield.ac.uk/handle/1826.2/3451.
Lasse Borg Anderson, Roberto Agromayor, and Lars O. Nord. Method for mean-line design and performance prediction of one-stage axial turbines. In Proceedings of the 63rd International Conference of Scandinavian Simulation Society. Linköping University Electronic Press, 2022. URL: https://hdl.handle.net/11250/3047450.
Ronald H. Aungier. Turbine aerodynamics: axial-flow and radial-flow turbine design and analysis. ASME Press, New York, 2006. ISBN 978-0-7918-0241-8.
Yogesh J. J Bagul. A smooth transcendental approximation to |x|. International Journal of Mathematical Sciences and Engineering Applications (IJMSEA), 11(2):213 – 217, 2017. URL: https://hal.science/hal-01713196.
M. W. Benner, S. A. Sjolander, and S. H. Moustapha. Influence of leading-edge geometry on profile losses in turbines at off-design incidence: experimental results and an improved correlation. Journal of Turbomachinery, 119(2):193–200, 1997. doi:10.1115/1.2841101.
M. W. Benner, S. A. Sjolander, and S. H. Moustapha. The influence of leading-edge geometry on secondary losses in a turbine cascade at the design incidence. Journal of Turbomachinery, 126(2):277–287, 2004. doi:10.1115/1.1645533.
M. W. Benner, S. A. Sjolander, and S. H. Moustapha. An empirical prediction method for secondary losses in turbines—Part II: A new secondary loss correlation. Journal of Turbomachinery, 128(2):281–291, 2006. doi:10.1115/1.2162594.
M. W. Benner, S. A. Sjolander, and S. H. Moustapha. An empirical prediction method for secondary losses in turbines—Part I: A new loss breakdown scheme and penetration depth correlation. Journal of Turbomachinery, 128(2):273–280, 2006. doi:10.1115/1.2162593.
Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurately computing the log-sum-exp and softmax functions. IMA Journal of Numerical Analysis, 41(4):2311–2330, 2021. doi:10.1093/imanum/draa038.
Adrian N Dahlquist. Investigation of losses prediction methods in 1D for axial gas turbines. Master's thesis, Lund University, Lund, 2008. URL: https://www.lunduniversity.lu.se/lup/publication/1423748.
J. D. Denton. Loss mechanisms in turbomachines. Journal of Turbomachinery, 115(4):621–656, 1993. doi:10.1115/1.2929299.
J. Dunham and P. M. Came. Improvements to the Ainley-Mathieson method of turbine performance prediction. Journal of Engineering for Power, 92(3):252–256, 1970. doi:10.1115/1.3445349.
S. C. Kacker and U. Okapuu. A mean line prediction method for axial flow turbine efficiency. Journal of Engineering for Power, 104(1):111–119, 1982. doi:10.1115/1.3227240.
S. H. Moustapha, S. C. Kacker, and B. Tremblay. An improved incidence losses prediction method for turbine airfoils. Journal of Turbomachinery, 112(2):267–276, 1990. doi:10.1115/1.2927647.
L. J. Pritchard. An eleven parameter axial turbine airfoil geometry model. In ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers Digital Collection, 1985. doi:10.1115/85-GT-219.
Carlos Ramirez, Reinaldo Sanchez, Vladik Kreinovich, and Miguel Argaez. √(x² + μ) is the most computationally efficient smooth approximation to |x|: A proof. Departmental Technical Reports (CS), 2013. URL: https://scholarworks.utep.edu/cs_techrep/789.
Resve A. Saleh and A. K. Md Ehsanes Saleh. Statistical properties of the log-cosh loss function used in machine learning. 2022. arXiv:2208.04564 [cs, stat]. doi:10.48550/arXiv.2208.04564.
Saravanamuttoo, G. F. C. Rogers, H. Cohen, and P. V. Straznicky. Gas Turbine Theory. Pearson College Div, Harlow, England ; New York, 6th edition edition, 2008. ISBN 978-0-13-222437-6.
B. Tremblay, S. A. Sjolander, and S. H. Moustapha. Off-design performance of a linear cascade of turbine blades. In Volume 1: Turbomachinery. American Society of Mechanical Engineers Digital Collection, 1990. doi:10.1115/90-GT-314.
Eric W. Weisstein. Vector norm. 2023. Publisher: Wolfram Research, Inc. URL: https://mathworld.wolfram.com/VectorNorm.html.
Yunus A Çengel. Fluid mechanics : fundamentals and applications. 2014. Edition: 3rd ed. in SI units. ISBN: 9781259011221 Place: Boston.