turboflow.pysolver_view.nonlinear_system_problems module
- class turboflow.pysolver_view.nonlinear_system_problems.LorentzEquations(sigma=1.0, beta=2.0, rho=3.0)[source]
Bases:
NonlinearSystemProblem
Implementation of the Lorentz System of Nonlinear Equations.
This class implements the following system of algebraic nonlinear equations:
\[\begin{split}\begin{align} \dot{x} &= \sigma(y - x) = 0\\ \dot{y} &= x(\rho - z) - y = 0\\ \dot{z} &= xy - \beta z = 0 \end{align}\end{split}\]Where:
\(\sigma\) is related to the Prandtl number
\(\rho\) is related to the Rayleigh number
\(\beta\) is a geometric factor
References
Edward N. Lorenz. “Deterministic Nonperiodic Flow”. Journal of the Atmospheric Sciences, 20(2):130-141, 1963.
- Attributes:
- sigmafloat
The Prandtl number.
- betafloat
The geometric factor.
- rhofloat
The Rayleigh number.
Methods
evaluate_problem(vars)`:
Evaluate the Lorentz system at a given state.