Bibliography#
Yogesh J. J Bagul. A smooth transcendental approximation to |x|. International Journal of Mathematical Sciences and Engineering Applications (IJMSEA), 11(2):213 – 217, 2017. URL: https://hal.science/hal-01713196.
Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurately computing the log-sum-exp and softmax functions. IMA Journal of Numerical Analysis, 41(4):2311–2330, 2021. doi:10.1093/imanum/draa038.
D. G. Elliott and E. Weinberg. Acceleration of liquids in two phase nozzles. Technical Report NASA-CR-95146, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1968. URL: https://ntrs.nasa.gov/citations/19680017730.
Carlos Ramirez, Reinaldo Sanchez, Vladik Kreinovich, and Miguel Argaez. √(x² + μ) is the most computationally efficient smooth approximation to |x|: A proof. Departmental Technical Reports (CS), 2013. URL: https://scholarworks.utep.edu/cs_techrep/789.
Alessandro Romei and Giacomo Persico. Computational fluid-dynamic modelling of two-phase compressible flows of carbon dioxide in supercritical conditions. Applied Thermal Engineering, 190:116816, 2021. doi:10.1016/j.applthermaleng.2021.116816.
Resve A. Saleh and A. K. Md Ehsanes Saleh. Statistical properties of the log-cosh loss function used in machine learning. 2022. arXiv:2208.04564 [cs, stat]. doi:10.48550/arXiv.2208.04564.
Eric W. Weisstein. Vector norm. 2023. Publisher: Wolfram Research, Inc. URL: https://mathworld.wolfram.com/VectorNorm.html.