Bibliography

Bibliography#

[Bag17]

Yogesh J. J Bagul. A smooth transcendental approximation to |x|. International Journal of Mathematical Sciences and Engineering Applications (IJMSEA), 11(2):213 – 217, 2017. URL: https://hal.science/hal-01713196.

[BHH21]

Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurately computing the log-sum-exp and softmax functions. IMA Journal of Numerical Analysis, 41(4):2311–2330, 2021. doi:10.1093/imanum/draa038.

[EW68]

D. G. Elliott and E. Weinberg. Acceleration of liquids in two phase nozzles. Technical Report NASA-CR-95146, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 1968. URL: https://ntrs.nasa.gov/citations/19680017730.

[RSKA13]

Carlos Ramirez, Reinaldo Sanchez, Vladik Kreinovich, and Miguel Argaez. √(x² + μ) is the most computationally efficient smooth approximation to |x|: A proof. Departmental Technical Reports (CS), 2013. URL: https://scholarworks.utep.edu/cs_techrep/789.

[RP21]

Alessandro Romei and Giacomo Persico. Computational fluid-dynamic modelling of two-phase compressible flows of carbon dioxide in supercritical conditions. Applied Thermal Engineering, 190:116816, 2021. doi:10.1016/j.applthermaleng.2021.116816.

[SS22]

Resve A. Saleh and A. K. Md Ehsanes Saleh. Statistical properties of the log-cosh loss function used in machine learning. 2022. arXiv:2208.04564 [cs, stat]. doi:10.48550/arXiv.2208.04564.

[SLJ+00]

Roland Span, Eric W. Lemmon, Richard T Jacobsen, Wolfgang Wagner, and Akimichi Yokozeki. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. Journal of Physical and Chemical Reference Data, 29(6):1361–1433, 2000. doi:10.1063/1.1349047.

[SW96]

Roland Span and Wolfgang Wagner. A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 25(6):1509–1596, 1996. Publisher: American Institute of Physics. doi:10.1063/1.555991.

[Wei23]

Eric W. Weisstein. Vector norm. 2023. Publisher: Wolfram Research, Inc. URL: https://mathworld.wolfram.com/VectorNorm.html.